MAEC™ 5.0 Specification

Core Concepts
October 9, 2017

1. Introduction
1.1. The MAEC Language
1.2. MAEC 4 vs. MAEC 5

1.3. Relationships to Other Languages and Formats

1.3.1. STIX Cyber Observables
1.3.2. STIX Vocabularies
1.4. Terminology
1.5. Normative References
1.6. Non-Normative References
1.7. Document Organization
1.7.1. Example Formatting

2. High Level Use Cases for the MAEC Language
2.1. Malware Analysis
2.1.1. Static and Dynamic Malware Analysis
2.1.2. Malware Visualization
2.1.3. Analysis-Oriented Malware Repositories
2.1.4. Standardized Tool Output
2.2. Cyber Threat Analysis
2.2.1. Malware Threat Scoring System
2.2.2. Attribution
2.2.3. Malware Provenance
2.3. Incident Management

2.3.1. Uniform Malware Reporting Format
2.3.2. Malware Repositories
2.3.3. Remediation

3. Common Data Types

3.1. Boolean

3.2. Dictionary

3.3. External Reference
3.3.1. Properties
3.3.2. Requirements

3.4. Identifier

3.5. List

3.6. Hexadecimal

3.7. Integer

3.8. Float

3.9. Open Vocabulary

3.10. String

3.11. Timestamp
3.11.1. Requirements

3.12. Observable Objects

3.13. Object Reference

4. MAEC Types
4.1. API Call Type
4.1.1. Properties
4.2. Analysis Metadata Type
4.2.1. Properties
4.3. Binary Obfuscation Type
4.3.1. Properties

16
16
16

17
18
18
19
19
20
20
21
22
22
23
23
24
24
25
25
26

27
27
27
29
30
33
34

4.4. Capability Type
4.4.1. Properties
4.5. Dynamic Features Type
4.5.1. Properties
4.5.2. Requirements
4.6. Field Data Type
4.6.1. Properties
4.6.2. Requirements
4.7. Malware Development Environment Type
4.7.1. Properties
4.7.2. Requirements
4.8. Name Type
4.8.1. Properties
4.9. Process Tree Node Type
4.9.1. Properties
4.10. Relationship Distance Type
4.10.1. Properties
4.11. Signature Metadata Type
4.11.1. Properties
4.11.2. Requirements
4.12. Static Features Type
4.12.1. Properties
4.12.2. Requirements
4.13. Cyber Observable Object Extensions
4.13.1. AV Classification Extension
4.13.1.1. Properties

5. MAEC Top Level Objects

35
35
37
38
39
40
40
41
41
42
42
43
43
44
44
46
46
48
48
48
49
50
51
52
52
52

54

5.1. Behavior
5.1.1. Properties
5.1.2. Relationships
5.2. Collection
5.2.1. Properties
5.2.2. Requirements
5.2.3. Relationships
5.3. Malware Action
5.3.1. Properties
5.3.2. Relationships
5.4. Malware Family
5.4.1. Properties
5.4.2. Relationships
5.5. Malware Instance
5.5.1. Properties
5.5.2. Relationships

6. MAEC Relationships
6.1. Relationship
6.1.1. Specification-Defined Relationship Summary
6.1.2. Properties

7. MAEC Package
7.1. Properties

8. Appendix - MAEC Idioms
8.1. Static Analysis Capture
8.2. Dynamic Analysis Capture
8.3. In-depth Analysis Capture

54
54
56
58
58
59
59
60
60
61
64
64
66
69
69
72

73
74
74
75

78
78

80
80
82
83

1. Introduction

Malicious software — also called "malware” — has existed in one form or another since the advent of the first PC virus in 1971. It is presently
responsible for a variety of malicious activities, ranging from the vast majority of spam email distribution via botnets to the theft of sensitive
information via targeted social engineering attacks. Whether the attackers are script kiddies, “hacktivists,” criminals, or nation states, all use
malware of some variety to negatively impact or gain access to an organization’s network. Effectively an autonomous agent operating on behalf of
the attacker, malware has the ability to perform any action capable of being expressed in code, and as such, represents a prodigious threat to
cyber security.

The protection of computer systems from malware is therefore currently one of the most important information security concerns for organizations
and individuals: even a single instance of undetected malware can result in damaged systems and compromised data. Being disconnected from a
computer network does not completely mitigate this risk of infection, as exemplified by malware that makes use of USB as its infection vector. As
such, the main focus of the majority of anti-malware efforts to date has been on preventing damaging effects through early detection.

There are currently several common methods used for malware detection, based mainly on physical signatures and heuristics. These methods are
effective in the context of their simplicity, although they have their own individual drawbacks, namely that signature-based systems are generally
unsuitable for dealing with zero-day, targeted, polymorphic, and other emerging forms of malware. Similarly, heuristic detection may be able to
generically detect certain types of malware while missing those that it does not have patterns for such as kernel-level rootkits. Therefore, while
these methods are still useful, they cannot be exclusively relied upon to deal with the current influx of malware.

Today, effective malware detection and mitigation requires a variety of analysis and detection methods, and many different vendor or tool-specific
data models have evolved as a result. Such data models are especially diverse in the manner in which they capture and describe higher level
characteristics of malware such as behaviors. As a result, interpreting and correlating information from an assortment of disparate sources can be
a difficult task.

The goal of the Malware Attribute Enumeration and Characterization (MAEC™, pronounced “mike”) effort is to provide a basis for transforming
malware research and response. MAEC aims to eliminate the ambiguity and inaccuracy that currently exists in malware descriptions and to
reduce reliance on signatures. In this way, MAEC seeks to improve human-to-human, human-to-tool, tool-to-tool, and tool-to-human
communication about malware, reduce potential duplication of malware analysis efforts by researchers, and allow for the faster development of
countermeasures by enabling the ability to leverage responses to previously observed malware instances. It is believed that MAEC can enable
these capabilities, thereby transforming malware research and response.

1.1. The MAEC Language

MAEC is a standardized language for sharing structured information about malware. The MAEC data model can be represented as a connected
graph of nodes and edges where MAEC top level objects define the nodes and MAEC relationships define the edges. A relationship is a link
between MAEC objects that describes how the objects are related.

As shown in Figure 1-1, MAEC defines several top level objects: Behaviors, Malware Actions, Malware Families, Malware Instances, and
Collections. Relationships between objects (including STIX cyber observable objects) are depicted by directed edges in the diagram: embedded
relationships (those that are specified directly on a top-level object as an object property) are labeled in black font (labels correspond to the
property names), and direct relationships are labeled using a blue background (labels correspond to literal values for the relationship type). See
Section 6.1 for more information about direct relationships; embedded relationships for each top-level object are specified in Section 5.

related-to

entity_refs

MAEC ToP LEVEL OBJECTS

lil] observable_refs

dropped-by
derived-from

dependent-:\

common_behavior_refs

Malware
Family

~N t

dynamic-features:
behavior_refs

N

Behavior

See Section 5.5.2

action_refs

Malware
dynamic-features: Instance

/\ action_refs .
dependent-on w See Section 5.5.2
9

»
Collection
& & &] common_code_refs
>
instance_cbject_refs
>
>

Malware

input_object_refs
Action

output_objects_refs

Figure 1-1. MAEC Overview

STIX CYBER
OBSERVABLE
OBJECTS

M

Observable

Artifact Object
AS Object
Directory Object
Domain Name Object
Email Address Object
File Object
IPv4 Address Object
IPv6 Address Object
MAC Address Object
Mutex Object
Network Traffic Object
Process Object
Software Object
URL Object
User Account Object
Windows Registry Key Object
X.509 Certificate Object

1.2. MAEC 4 vs. MAEC 5

MAEC 5.0 represents a significant refactoring and simplification of previous MAEC data models. Broadly, the MAEC 5.0 development goals were
to simplify and refactor any components that were overly complicated or nested, to deprecate any components that were not used, and to align
with the design principles of STIX 2.

The following list summarizes the primary differences between MAEC versions 4 and 5:

Architectural Changes

(e]

Graph-based data model. The MAEC 4 data model was a combination of graph-like and non-graph like components. With MAEC
5, we have shifted towards a much more graph-based approach with the definition of MAEC top-level objects (i.e., nodes of the
graph) and MAEC relationships (i.e., edges of the graph).

JSON serialization. All previous versions of MAEC were serialized as XML - with MAEC 5 we moved to a JSON/JSON schema
based serialization, which significantly reduces the size and complexity of MAEC documents, while also allowing for better
integration with various types of applications.

One output format. MAEC 4 defined three different output formats: the MAEC Bundle, Package, and Container. MAEC 5
deprecates the MAEC Bundle and Container in favor of the MAEC Package, which is now the only MAEC output format.

New Entities

(0]

Malware Family top-level object. MAEC 5 defines a new object for capturing properties associated with Malware Families,
including those that are common to all members of the family.

Signature metadata type. MAEC 5 defines a new type for capturing metadata about signatures and rules (e.g., YARA rules) that
may have triggered during the analysis of a malware instance.

Binary obfuscation type. MAEC 5 defines a new type for capturing details of how a malware binary may be obfuscated, such as
with a packer or simple XOR encoding, to include layering of obfuscation methods (for example, if a binary is obfuscated with two
different methods).

Refactored and Simplified Entities

(0]

(e]

Malware Subject type. Renamed to “Malware Instance” for clarity, this type has been significantly refactored, and now captures all
of its analysis results as either embedded entities or direct references to other MAEC top-level objects, without the need for an
intermediary type.

Behavior type. This type has remained semantically consistent, but now includes an extensive default vocabulary for names and
allows for external references to data sources such as ATT&CK [ATT&CK] for specifying the particular technique used in
implementing the Behavior.

o AV Classification type. This type has been refactored to be more compatible with the output of VirusTotal, and it can now be
specified on any STIX Cyber Observable File Object that is included in a MAEC Package.

o Analysis type. Renamed to “Analysis Metadata” for clarity, this type has been significantly simplified and no longer includes the full
textual report specified for the analysis or a direct link to the specific results of the analysis, but it still retains the ability to capture
useful general metadata about an analysis that was performed.

1.3. Relationships to Other Languages and Formats

The MAEC Language directly imports and uses components of the OASIS Structured Threat Information Expression (STIX™) language [OASIS],
[STIX-1], [STIX-2], [STIX-3], [STIX-4]. An organization performing cyber threat analysis could use the STIX Malware Object; however, MAEC is
intended to provide a comprehensive, structured way of capturing detailed information about malware samples, and is therefore targeted primarily
towards malware analysts. STIX, meanwhile, is meant to capture a broad spectrum of cyber-threat related information, including basic information
on malware, which makes it applicable to a more diverse audience.

1.3.1. STIX Cyber Observables

Malware characterization with MAEC relies on the common implementation (structure and content) that STIX Cyber Observables provide for
expressing cyber observables across and among MAEC's full range of use cases. Thus, whereas MAEC provides coverage of malware analysis
context, behaviors, and capabilities, STIX Cyber Observables provide the underpinnings necessary to broadly cover objects, such as files and
network connections, used in the malware context.

Cyber Observables are defined by two documents in the STIX specification. STIX™ Version 2.0. Part 3: Cyber Observable Core Concepts
([STIX-3]) describes and defines Cyber Observable Core Concepts, which are the parts of STIX that are specific to representation of cyber
observables. STIX™ Version 2.0. Part 4: Cyber Observable Objects ([STIX-4]) contains a library of Cyber Observable Objects, i.e., definitions for
the types of objects that can be observed.

1.3.2. STIX Vocabularies

To avoid duplicating content, MAEC makes use of existing STIX vocabularies wherever applicable. In such cases, a direct reference to the
corresponding STIX Vocabulary is provided in the property description.

https://docs.google.com/document/d/1HRVFn2kAxBOTMbEb3KRu8tjMoHm-KRAI-2R8CTzGil4/edit#bookmark=id.uq8rwa36xuuz
https://docs.google.com/document/d/1HRVFn2kAxBOTMbEb3KRu8tjMoHm-KRAI-2R8CTzGil4/edit#bookmark=id.uq8rwa36xuuz
https://docs.google.com/document/d/1HRVFn2kAxBOTMbEb3KRu8tjMoHm-KRAI-2R8CTzGil4/edit#bookmark=id.uq8rwa36xuuz
https://docs.google.com/document/d/1HRVFn2kAxBOTMbEb3KRu8tjMoHm-KRAI-2R8CTzGil4/edit#bookmark=id.uq8rwa36xuuz

1.4. Terminology

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in [REC2119].

1.5. Normative References

[STIX-1]

[STIX-2]

[STIX-3]

[STIX-4]

[STIX-Vocab1]

[RFC2119]

[RFC7159]

[RFC3986]

STIX™ Version 2.0. Part 1: STIX Core Concepts.
https://docs.google.com/document/d/1IcA5KhgINdyX3tO17bBluC5ngSf70M5qgK9nuAoYJgw

STIX™ Version 2.0. Part 2: STIX Objects
https://docs.google.com/document/d/1S5XhYBF50T599b00uHtUf81BzFVNY8RysFHIj93DgsY

STIX™ Version 2.0. Part 3: Cyber Observable Core Concepts
https://docs.google.com/document/d/1PSGv6Uvo3YyrK354cHOcvdn7gGedbhYJkgNVzw\WOEBA

STIX™ Version 2.0. Part 4: Cyber Observable Objects
https://docs.google.com/document/d/1DdS-NrVTiGJ3wvCJ7dbSIhYeiaWS6G6dOXu2F3POpUs

STIX™ Version 2.0. Part 3: Cyber Observable Core Concepts, Encryption Algorithm Vocabulary
https://docs.google.com/document/d/1ti4Ei_ii_Uc4izHNZIYmBPINgD5-iVWC--y-3HMGZyg/edit#heading=h.h5b9uravt8oh

Bradner, S., “"Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119,
March 1997, http://www.rfc-editor.org/info/rfc2119.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,
March 2014. http://www.rfc-editor.org/info/rfc7159.txt.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
DOI 10.17487/RFC3986, January 2005, http://www.rfc-editor.org/info/rfc3986.

10

https://docs.google.com/document/d/1IcA5KhglNdyX3tO17bBluC5nqSf70M5qgK9nuAoYJgw
https://docs.google.com/document/d/1S5XhY6F5OT599b0OuHtUf8IBzFvNY8RysFHIj93DgsY
https://docs.google.com/document/d/1PSGv6Uvo3YyrK354cH0cvdn7gGedbhYJkgNVzwW9E6A
https://docs.google.com/document/d/1DdS-NrVTjGJ3wvCJ7dbSlhYeiaWS6G6dOXu2F3POpUs
https://docs.google.com/document/d/1ti4Ei_ii_Uc4izHNZlYmBP9NgD5-iVWC--y-3HmGZyg/edit#heading=h.h5b9uravt8oh
https://docs.google.com/document/d/1DdS-NrVTjGJ3wvCJ7dbSlhYeiaWS6G6dOXu2F3POpUs
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc7159
http://www.rfc-editor.org/info/rfc7159.txt
http://www.rfc-editor.org/info/rfc3986
http://www.rfc-editor.org/info/rfc3986

[RFC4122]

[1ISO10646]

[RFC3339]

Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI
10.17487/RFC4122, July 2005, http://www.rfc-editor.org/info/rfc4122.

“ISO/IEC 10646:2014 Information technology -- Universal Coded Character Set (UCS)”, 2014. [Online]. Available:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip

Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
http://www.rfc-editor.org/info/rfc3339.

1.6. Non-Normative References

[OASIS]

[MAEC Vocab]
[ATT&CK]
[MAEC]

[CVSS]

OASIS Cyber Threat Intelligence (CTI) Technical Committee (TC).

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti

MAEC 5.0 Vocabularies. [Online]. Available: MAEC 5.0 Vocabularies.

Adversarial Tactics, Techniques & Common Knowledge. [Online]. Available: ATT&CK.
Malware Attribute Enumeration and Characterization. [Online]. Available: MAEC

Common Vulnerability Scoring System SIG. [Online]. Available: CVSS

1.7. Document Organization

This document begins with an examination of four high-level use cases relevant to MAEC. That is followed with a summary of common data types
which is followed immediately by a chapter elucidating specific MAEC data types. Then Cyber Observable object extensions are discussed,
followed by MAEC top level objects. The document concludes with a discussion of the standard MAEC output format.

1.7.1. Example Formatting

Note that certain properties are highlighted in bold in the examples provided in sections 4-7; these properties are especially pertinent to the
example as they are part of the data model component being illustrated by the example.

11

http://www.rfc-editor.org/info/rfc4122
http://www.rfc-editor.org/info/rfc4122
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c063182_ISO_IEC_10646_2014.zip
http://www.rfc-editor.org/info/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cti
https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA
https://attack.mitre.org/wiki/Main_Page
http://maecproject.github.io/
https://www.first.org/cvss/

2. High Level Use Cases for the MAEC Language

At its highest level, MAEC is a domain-specific language for non-signature based malware characterization. Because MAEC provides a common
vocabulary and grammar for the malware domain, it follows that the majority of the use cases for MAEC are motivated by the unambiguous and
accurate communication of malware attributes enabled by MAEC.

To illustrate this in more detail, we provide high level use cases in three general areas: malware analysis, cyber threat analysis, and incident
management.

2.1. Malware Analysis

As shown in Figure 3-1, MAEC will typically be used to encode the data obtained from malware analysis. In such a scenario, a malware instance
is analyzed automatically or manually using either dynamic or static methods. The results are then captured using the a MAEC Package to
communicate the analysis results. As we will also briefly discuss, MAEC Packages can also be used to help with visualization, to capture data for
storage in analysis-oriented repositories, and as a means for standardizing tool output.

2.1.1. Static and Dynamic Malware Analysis

The analysis of malware using static and dynamic/behavioral methods is critical for understanding the malware’s inner workings. Information
obtained from such analyses can be used for malware detection, mitigation, the development of countermeasures, and as a means of triage for
determining whether further analysis is necessary.

In terms of static analysis, MAEC can be used to capture the particular details that are extracted from a malware instance. Details can range from
the static attributes of a malware instance binary, such as information on how the instanced was packed, to interesting code snippets obtained
from the manual reverse engineering of the instance binary code.

With regard to dynamic analysis, MAEC can be used to capture details of the particular actions exhibited by executing the malicious binary or
code. This can be done at multiple levels of abstraction, starting with the lowest level (which is most commonly captured as some form of native
system API call) and extending to higher levels describing a particular unit of malicious functionality, such as keylogging or vulnerability
exploitation.

12

For both static and dynamic analysis, MAEC can capture information on each analysis as a separate item, including the type of analysis
performed, information on any tools that were used, and other associated data such as the details of the analysis environment. As such, MAEC
permits all of the analyses for a malware instance to be described in a standard fashion and captured in a single document, the MAEC Package.

2.1.2. Malware Visualization

In addition to capturing the output of one or more malware analyses, a MAEC Package can also be used as a standard format to create
visualizations of malware behavior. Owing to the graph-based nature of MAEC, such visualizations permit clear linkage of the low-level Actions,
mid-level Behaviors, and high-level Capabilities performed by Malware and facilitate comparison between two or more malware instances or
families.

While no visualization tools currently exist to display MAEC content, we expect that future tools will provide much needed insight to analysts for
quickly identifying similarities between malware instances and between analysis outputs from different tools.

2.1.3. Analysis-Oriented Malware Repositories

Malware repositories oriented toward analysis often have very specific requirements, and it is common for security organizations to use their own
custom schemas for storage of data in such repositories. From a malware analysis standpoint at a local level, custom repositories can serve their
purpose. However, sharing or exporting data from custom repositories can be difficult and time-consuming due to the need to translate between
multiple proprietary schemas, and the usefulness of a custom repository as a long-term analysis resource can be limited if the schema is not
suitably expressive.

MAEC is well-suited for use as a common intermediate format for mapping between dissimilar malware repository schemas so that analysis
information stored in disparate repositories can be shared, allowing teams or organizations to quickly leverage each other’s analysis results.
Furthermore, for appropriate database architectures, using the MAEC data model in malware repositories would not only enable information
sharing but would also permit improved data-mining due to MAEC’s structuring and labeling of malware attributes (MAEC can serve as a physical
or logical data model, depending upon the architecture). For example, an analyst could query a MAEC-based repository for malware instances
that exhibit a particular MAEC-defined Action, Behavior, or Capability.

2.1.4. Standardized Tool Output

Like human analysts, malware analysis tools that automatically generate reports lack consistency in reporting. Not only does this make it difficult
to correlate output between tools, it also makes it difficult to evaluate the breadth of coverage of individual tools. These issues would be mitigated,

13

and ingestion of tool results into analysis-oriented repositories made easier, if malware analysis tools were to adopt MAEC as a common output
format.

Given MAEC'’s extensive support for capturing the output of both static and dynamic malware analysis, it follows that MAEC could be used as a
standard output format for such tools. Native support for MAEC in this manner is already present in several tools, and there are also existing
translator utilities for converting certain tool outputs into MAEC. Further details are available on the MAEC Web site [MAEC].

Standardized tool output using MAEC could also be used as objective criteria in the assessment of anti-malware tools. In this sense, a tool would
be assessed on the basis of its ability to detect all of the MAEC-defined attributes associated with a particular malware type or class. If a tool
could not detect all of the MAEC-defined attributes associated with a particular malware type, then it could not claim to be capable of detecting that
malware type or class.

2.2. Cyber Threat Analysis

Beyond analysis of a particular malware instance, an organization defending against cyber adversaries often engages in the broader task of cyber
threat analysis — the collection and analysis of cyber attack and threat information in relation to the organization’s potential vulnerabilities. Cyber
threat information includes analysis results of malware instances, along with additional threat data such as intent and kill-chain information and
adversary tools, techniques, and procedures. Given a corpus of threat data, skilled cyber analysts must identify patterns of related activities,
attribute activities to particular threat actors, identify and implement mitigation strategies, and anticipate future launches of previously-seen and
similar attacks.

For successful cyber threat analysis, detailed analysis information about the malware instances must be obtained. For example, triage procedures
may reveal information such as spear-phishing email headers or URLs to malicious websites, while in-depth malware analysis may uncover
command and control domain names and IP addresses. Although today’s malware reporting may include such details, currently there is usually
no standardization between reports, and reports do not typically reference relevant standards (e.g., CVE). As a result, security operations staff
and others charged with protecting systems from cyber threats may find it difficult to judge the true threat that malware represents. However,
capturing this information in MAEC will result in a threat being more readily understood and evaluated because the information will be more
consistent across analysts and incidents. Furthermore, MAEC’s standardized encoding of the Capabilities exhibited by a malware instance will
allow for the accurate discernment of the threat that the malware poses to an organization and its infrastructure.

2.2.1. Malware Threat Scoring System

This linkage between MAEC and other standards efforts (see Section 1.3) could also allow for the creation of a malware threat scoring system,
similar to that of the Common Vulnerability Scoring System (CVSS) [CVSS] for software vulnerabilities. MAEC'’s link to relevant standards as well

14

as its characterization of mid and high-level malware features would provide the necessary data for accurately describing the attack vectors and
payload of a malware instance. This data could then be used to score the potential impact of the malware based on pre-defined categories, such
as payload type (e.g., data theft, bot-like behavior, etc.) and degree of persistence, for example.

2.2.2. Attribution

In cyber threat analysis, it is often useful to characterize the tools, techniques, and procedures used in the attack as being part of a set belonging
to a particular attacker. When correlated across multiple attacks, such a connection can be helpful for the purposes of attribution. Accordingly,
with malware being one of the most prevalent tools used by attackers, it would be useful to characterize specific malware instances as belonging
to a set of tools used by specific attackers. MAEC would provide this capability, as its standard vocabulary and grammar permits the accurate
identification of malware attributes observed in previous attacks, thus allowing for the construction of an accurate link between attackers and their
malware toolset, based on previously observed and characterized malware.

2.2.3. Malware Provenance

Understanding and tracking the source and evolution of malware families over time, as well as trying to understand the characteristics of a
malware instance that might be useful in identifying its provenance, are important parts of the anti-malware lifecycle. MAEC is useful in both cases.
Malware family evolution can be tracked via MAEC’s graph-based data model, while the lineage of malware instances can be modeled by
leveraging top-level relationships between MAEC entities. With regard to the latter, MAEC defines a standard set of malware properties, such as
strings, for both malware instances and families, which can serve as artifacts that are directly associated with provenance.

2.3. Incident Management

When a cyber incident occurs, a defending organization must coordinate their response among a team of analysts and decision makers. In some
cases, the organization may solicit help from Computer Security Incident Response Teams (CSIRTs), law enforcement, Internet Service Providers
(ISPs), or product vendors. Regardless of the underlying threat, when numerous people or parties are involved, even within the same
organization, effective incident management is extremely important. As we discuss below, a uniform malware reporting format, standardized
malware repositories, and the ability to verify remediation procedures — all based on the MAEC data model — greatly enhance malware-related
incident management efforts.

15

2.3.1. Uniform Malware Reporting Format

Current malware reporting, while useful for determining the general type and nature of a malware instance, is inherently ambiguous due to the lack
of a common structure and vocabulary. Furthermore, reported information often excludes key malware attributes that may be useful for mitigation
and detection purposes (e.g., the specific vulnerability that is exploited). Certainly, the value of malware reporting to end-users is significantly
degraded without an encompassing, common format.

MAEC’s standardized vocabularies and grammar for use in malware reporting facilitates the creation of a separate, uniform reporting format. Such
a format will reduce confusion as to the nature of malware threats through the accurate and unambiguous communication of malware attributes,
while also ensuring uniformity between reports composed by different authors and organizations. Also, because current reporting is typically
captured in free-form text format, the structure provided by MAEC offers additional capabilities such as machine-based manipulation and
automated ingest of malware reporting data.

2.3.2. Malware Repositories

As discussed in Section 2.1.3, there is typically disparity among the malware repository schemas currently in use by different organizations, with
essentially every security organization using their own custom schema. This makes effective sharing of analysis information difficult, even if both
parties want to share analyses and other data.

MAEC provides a solution. As discussed previously, the MAEC schema is well-suited to be used as a common, standardized, intermediate format
for mapping between dissimilar malware repository schemas so that analysis information stored in disparate repositories can be shared.

2.3.3. Remediation

One of the current realities of cyber security is that malware detection and prevention of infection is not always possible, especially with new and
targeted malware threats. Consequently, remediation of malware infections has become increasingly important. Unfortunately, most conventional
AV tools and utilities are not capable of removing every trace of a detected malware instance. Thus, even if the explicitly malicious portions of an
infection are cleaned from a system (which is not always the case), the remaining pieces may lead to false positives in future scans, potentially
resulting in a misallocation of remediation resources. Even worse, an incomplete remediation could render the system unstable, as well as prone
to future infection.

MAEC provides a means for communicating the exact artifacts and low-level attributes associated with a malware instance, permitting greatly
improved remediation of malware infections. Using MAEC, administrators can perform manual remediation based on the data contained in a

16

MAEC Package, or they can verify the remediation performed by another tool by checking for the existence of artifacts captured in a MAEC
Package.

3. Common Data Types

This section defines the common data types used throughout MAEC. These types will be referenced by the “Type” column in the tables of other
sections. This section defines the names and permitted values of common types that are used in MAEC; however, it does not define the meaning
of any properties using these types. These types may be further restricted elsewhere in the document.

Data Type Description

boolean A value of true or false.

dictionary A set of key/value pairs.

external-reference A non-MAEC identifier or reference to other related external content.

identifier An identifier (ID) for a MAEC Top Level Object, Relationship Object, or Package.

list A sequence of values ordered based on how they appear in the list. The phrasing “1ist of type <type>” is

used to indicate that all values within the list MUST conform to the specified type.

hex An array of octets (8-bit bytes) as hexadecimal.
integer A number without any fractional or decimal part.
float A double-precision number.

open-vocab A value from a MAEC open vocabulary.

string A series of Unicode characters.

17

timestamp A time value (date and time).

stix-observable-objects A dictionary of STIX Cyber Observable Obijects.
object-ref A reference to a STIX Cyber Observable Object.
3.1. Boolean

Type Name: boolean
The boolean data type has two possible values: true or false.

The JSON MTI serialization uses the JSON boolean type [REC7159], which is a literal (unquoted) true or false.

Examples
{

"is_encoded": true,

3.2. Dictionary

Type Name: dictionary

The dictionary data type captures an arbitrary set of key/value pairs.

Dictionary keys:
e MUST be unique in each dictionary.
MUST be in ASCII.
Are limited to the characters a-z (lowercase ASCII), A-Z (uppercase ASCII), numerals 0-9, hyphen (-), and underscore ().
SHOULD be no longer than 30 ASCII characters in length.
MUST have a minimum length of 3 ASCII characters.
MUST be no longer than 256 ASCII characters in length.

e SHOULD be lowercase.

Dictionary values MUST be valid common data types.

Examples
{

"attributes": {
"file type":"pdf",
"encryption algorithm":"rc4"

}

3.3. External Reference

Type Name: external-reference

The external-reference data type describes pointers to information represented outside of MAEC. For example, a Malware Instance object
could use an external reference to indicate an ID for that malware in an external database or a report could use references to represent source

material.

The JSON MTI serialization uses the JSON object type [REC7159] when representing external-reference.

3.3.1. Properties

Property Name Type Description

source_name (required) string The source within which the external-reference is defined (system, registry,
organization, etc.).

description (optional) string A human readable description.

url (optional) string A URL reference to an external resource [REC3986].

19

external_id (optional) string An identifier for the external reference content.

3.3.2. Requirements

e In addition to the source_name property, at least one of the external_id, url, or description properties MUST be present.

Examples
{
"references": [
{
"source_name": "ACME Threat Intel",
"description”: "Threat report”,
"url": "http://www.example.com/threat-report.pdf"
}
]
}
{

"references": [
{"url”:"https://collaborate.mitre.org/maec/index.php/Behavior:45"},
{"url":"https://collaborate.mitre.org/maec/index.php/Behavior:45/13"}

]

3.4. ldentifier

Type Name: identifier

The identifier data type universally and uniquely identifies a MAEC Top Level Object, Relationship Object, or Package. Identifiers (IDs) MUST
follow the form object-type--UUIDv4, where object-type is the exact value (all type names are lowercase strings, by definition) from the type
property of the object being identified or referenced and where the UUIDv4 is an RFC 4122-compliant Version 4 UUID. The UUID MUST be
generated according to the algorithm(s) defined in RFC 4122, Section 4.4 (Version 4 UUID) [REC4122].

The JSON MTI serialization uses the JSON string type [REC7159] when representing identifier.

20

http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

Examples

{
"behaviors": [
{
"type": "behavior",
"id": "behavior--c2f@lec8-42ff-403e-9e76-b4e8alffelb8",
"name": "persist after system reboot"
}
]
}
3.5. List

Type Name: list

The 1ist data type defines an ordered sequence of values. The phrasing “1ist of type <type>” is used to indicate that all values within the list
MUST conform to the specific type. For instance, 1ist of type integer means that all values of the list must be of the integer type. This
specification does not specify the maximum number of allowed values in a list, however every instance of a list MUST have at least one value.
Specific MAEC object properties may define more restrictive upper and/or lower bounds for the length of the list.

Empty lists are prohibited in MAEC and MUST NOT be used as a substitute for omitting the property if it is optional. If the property is required, the
list MUST be present and MUST have at least one value.

The JSON MTI serialization uses the JSON array type [REC7159], which is an ordered list of zero or more values.

Examples
{

"action_refs": [
"malware-action--c@95f1lab-0847-4d89-92ef-010e6ed39c20",
"malware-action--80f3f63a-d5c9-4599-b9e4-2a2bd7210736",
"malware-action--5643f634-fff9-4b39-34a4-76fed73dodd6"

1B

21

3.6. Hexadecimal
Type Name: hex

The hex data type encodes an array of octets (8-bit bytes) as hexadecimal. The string MUST consist of an even number of hexadecimal
characters, which are the digits '0' through '9' and the letters 'a’ through 'f".

Examples
{

"file_offset":"0400af88"

3.7. Integer
Type Name: integer

The integer data type represents a number without any fractional or decimal part. Unless otherwise specified, all integers MUST be capable of
being represented as a signed 64-bit value ([-(2**63)+1, (2**63)-1]). Additional restrictions MAY be placed on the type as described where it is
used.

In the JSSON MTI serialization, integers are represented by the JSON number type [REC7159].

Examples
{

"count": 8,

22

https://docs.google.com/document/d/1ShNq4c3e1CkfANmD9O--mdZ5H0O_GLnjN28a_yrEaco/edit#bookmark=id.mmt4e4p953r5

3.8. Float

Type Name: float

The float data type represents an IEEE 754 [IEEE 754-2008] double-precision number (e.g., a number with a fractional part). However, because
the values zInfinity and NaN are not representable in JSON, they are not valid values in STIX.

In the JSON MTI serialization, floating point values are represented by the JSON number type [REC7159].

Examples
{

"distance": 8.321,

3.9. Open Vocabulary

Type Name: open-vocab

The open-vocab data type is represented as a string. For properties that use this type, there will be a list of suggested values to define the
property (see [MAEC Vocab]). The value of the property SHOULD be chosen from the open vocabulary but MAY be any other string value. Values
that are not from the open vocabulary SHOULD be all lowercase (where lowercase is defined by the locality conventions) and SHOULD use
hyphens instead of spaces or underscores as word separators.

A consumer that receives MAEC content with one or more open-vocab terms not defined in the open vocabulary MAY ignore those values.

The JSON MTI serialization uses the JSON string type [REC7159] when representing open-vocab.

Examples
Example using a value from an open vocabulary:
{

"structural_features": {

23

https://docs.google.com/document/d/1ShNq4c3e1CkfANmD9O--mdZ5H0O_GLnjN28a_yrEaco/edit#bookmark=id.9hde3ap1qu0e
https://docs.google.com/document/d/1ShNq4c3e1CkfANmD9O--mdZ5H0O_GLnjN28a_yrEaco/edit#bookmark=id.mmt4e4p953r5

"name" : "code-compression",

}

Example using a custom value:
{

"structural_features": {

"name" : "some-odd-code-obfuscation",

3.10. String

Type Name: string

The string data type represents a finite-length string of valid characters from the Unicode coded character set [ISO10646]. Unicode incorporates

ASCII and the characters of many other international character sets.

The JSON MTI serialization uses the JSON string type [REC7159], which mandates the UTF-8 encoding for supporting Unicode.

Examples
{

"name" : "add-windows-hook",

3.11. Timestamp

Type Name: timestamp

24

The timestamp data type defines how timestamps are represented in MAEC.

The JSON MTI serialization uses the JSON string type [REC7159] when representing timestamp.

3.11.1. Requirements

e The timestamp property MUST be a valid RFC 3339-formatted timestamp [REC3339] using the format YYYY-MM-DDTHH:mm:ss[.s+]Z where
the “s+” represents 1 or more sub-second values. The brackets denote that subsecond precision is optional, and that if no digits are
provided, the decimal place MUST NOT be present.

e The timestamp MUST be represented in the UTC timezone and MUST use the “Z” designation to indicate this.

Examples

{

"submission_date": "2016-01-20T12:31:12.12345Z2",

3.12. Observable Objects

Type Name: stix-observable-objects

The stix-observable-objects data type is a dictionary (see the dictionary data type) where the keys are used as references to the values,
which are STIX Observable Objects. Each key in the dictionary SHOULD be a non-negative monotonically increasing integer, starting at the value
0 and incrementing by 1, and represented as a string within the JSON MTI serialization. However, implementers MAY elect to use an alternate key
format.

Examples
The following example illustrates the capture of a STIX Network Traffic Object and an associated IPv4 Address Object.

Ilell: {
"type": "ipv4-addr",
"value": "198.51.100.2"
¥

25

"1 {

"type": "network-traffic",
"dst_ref": "0"

}

¥

3.13. Object Reference

Type Name: object-ref

The object-ref data type specifies a reference to a STIX Observable Object captured in the MAEC Package observable_objects property
(stix-observable-objects). The reference MUST be valid within the scope of the local Package and MUST reference a STIX Cyber
Observable of one of the following types:

artifact
autonomous-system
directory
domain-name
email-addr
email-message
file

ipv4-addr
ipv6-addr
mac-addr
network-traffic
process

software

url

user-account
windows-registry-key
x509-certificate

Examples
The following example illustrates the referencing of a malware binary (represented as a STIX Cyber Observable File Object) by a Malware
Instance.

{
"type":"package",
"id":"package--7892dac8-c416-35c6-bc5c-7b6dcf576f91",

26

"schema_version":"5.0",
"maec_objects": [

"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",

"hashes":{"MD5":"4472ead40dc71e5bb701574ea215a81al"},

{
"type":"malware-instance",
"instance_object_refs": ["0"]
}
1,
"observable_objects": {
Ilell: {
"type":"file",
"size":25536
}

4. MAEC Types

These MAEC 5.0 types are used by MAEC's top level objects (TLOs), that is, the entities captured at the top level of a MAEC Package. Types are

presented in alphabetical order.

4.1. API Call Type

Type Name: api-call

The api-call type serves as a method for characterizing API Calls, as implementations of Malware Actions.

4.1.1. Properties

Property Name Type Description
address (optional) hex Captures the hexadecimal address of the API call in the binary.
return_value (optional) string Captures the return value of the API call.

27

parameters (optional) dictionary

Captures a list of function parameters. Each key in the dictionary MUST
be a string that captures the exact name of the parameter, and each
corresponding key value MUST be a string that captures the
corresponding parameter value.

For parameter values that can be represented by a constant, e.g.,
GENERIC_WRITE, the constant rather than the literal SHOULD be
used. For cases where the parameter cannot be represented by a
constant, the literal (as reported by the tool producing the data) MUST
be used.

function_name (required) string

Captures the full name of the API function called, e.g., CreateFileEx.

Examples
Action with Parameter Constants

{
"type":"package",
"id":"package--7892dac8-c416-35c6-bc5c-7b6dcf576f91",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-action",

"id":"malware-action--c095f1ab-0847-4d89-92ef-010e6ed39c20",

"name":"delete file",
"output_object_refs": ["3"],
"api_call": {

"address":"040089%aa",

"return_value":"0400f258",

"parameters": {
"lpFileName":"C:\\Temp\\badfile.pptx",
"dwDesiredAccess":"GENERIC_WRITE",
"dwShareMode" : "FILE_SHARE_READ",
"lpSecurityAttributes":"NULL",
"dwCreationDisposition":"CREATE_NEW",
"dwFlagsAndAttributes" :"FILE_ATTRIBUTE_NORMAL",
"hTemplateFile": "00000000"

¥

28

nw,n

"function_name":"CreateFileEx"

]
}

Action with Parameter Literals

{
"type":"package",
"id":"package--6e8a76ff-9ffa-419e-8ad4-8al65e86f171",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-action",
"id":"malware-action--2dc56470-bef0-4a32-910f-760a5d62be2b",
"name" :"delete file",

"input_object_refs": ["1"],

"api_call": {

"address":"040089%aa",

"return_value":"1",

"parameters"”: {
"lpFileName":"C:\\Temp\\badfile.pptx",
"dwDesiredAccess" :"40000000",
"dwShareMode" : "0x00000001" ,

"lpSecurityAttributes":"0",
"dwCreationDisposition":"1",
"dwFlagsAndAttributes":"128",
"hTemplateFile": "00000000"

}s

"function_name":"DeleteFile"

4.2. Analysis Metadata Type
Type Name: analysis-metadata

The analysis-metadata type captures metadata associated with the analyses performed on a malware instance, such as the tools used and the
analysts who performed the analysis.

29

4.2.1. Properties

Property Name Type Description

is_automated (required) boolean Captures whether the analysis was fully automated (i.e., no human
analyst in the loop). If this property is set to true, the analysts
property MUST NOT be included.

start_time (optional) timestamp Captures the date/time that the analysis was started.

end_time (optional) timestamp Captures the date/time that the analysis was completed.

last_update_time (optional) timestamp Captures the date/time that the analysis was last updated.

confidence (optional) integer Captures the relative measure of confidence in the accuracy of the

analysis results. The confidence value MUST be a number in the
range of 0-100.

analysts (optional)

list of type string

Captures the names of analysts who performed the analysis.

analysis_type (required)

open-vocab

Captures the type of analysis performed.

The value for this property SHOULD come from the
analysis-type-ov vocabulary.

comments (optional)

list of type string

Captures comments regarding the analysis that was performed.

A comment SHOULD be attributable to a specific analyst and
SHOULD reflect particular insights of the author that are significant
from an analysis standpoint.

tool_refs (optional)

list of type object-ref

References the tools used in the analysis of the Malware Instance.

30

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.dia2roksc0sp

The objects referenced MUST be of STIX Cyber Observable type
software and MUST be specified in the observable_objects
property of the Package.

analysis_environment dictionary Captures any metadata, such as the host virtual machine, associated

(optional) with the analysis environment used to perform the dynamic analysis
of the Malware Instance.
Each key in the dictionary SHOULD come from the
analysis-environment-ov, and each corresponding key value
SHOULD be a valid object-ref or 1ist of object-ref. This
property MUST NOT be included if analysis_type is set to a value
of static.

description (optional) string Captures a textual description of the analysis performed.

conclusion (optional)

open-vocab

Captures the conclusion of the analysis, such as whether the binary
was found to be malicious.

The value for this property SHOULD come from the
analysis-conclusion-ov vocabulary.

references (optional)

list of type external-reference

Captures any references to reports or other data sources pertaining
to the analysis.

Examples

{
"type":"package",

"id":"package--7892dac8-c416-35c6-bc5c-7b6dcf576f91",

"schema_version":"5.0",
"maec_objects":[

{

n,n

"type":"malware-instance",

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.l5bce4xmy4lh

"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs":[
ngn
1,
"name" : {
"value":"MalwareB.1.1",
"confidence":80
s
"analysis_metadata":[
{
"is_automated":false,
"start_time":"2017-02-05T12:15:00Z",
"end_time":"2017-02-05T12:20:00Z",
"last_update_time":"2017-02-05T12:20:00Z",
"confidence":75,
"analysts":[
"John Doe",
"Jane Doe"
1,
"analysis_type":"dynamic",
"analysis_environment":{
"operating-system":"2",
"host-vm":"3",
"installed-software":[
g,
g
1
s
"comments": [
"The decryption key is: Infected---key+-34512",
"Analysis required increase of default timeout value"
1,
"tool_refs":[
nyn
1,

"description”:"Basic automated sandbox analysis.",

"conclusion":"malicious"
b
1
}

1,

"observable_objects":{
Ilell:{
"type":"file",

32

"hashes":{
"MD5":"4472ea40dc71e5bb701574ea215a81al"
bs
"size":25536
s
"1
"type":"software",
"name" : "Cuckoo Sandbox",
"version":"2.0"

¥
II2II:{
"type":"software",

n,n

"name" : "Windows 7",

"vendor":"Microsoft

3

"3":{
"type":"software",
"name" :"Virtualbox",
"version":"5.0.40",
"vendor":"Oracle"

s

"4 {
"type":"software",
"name":"Office 2010",
"vendor":"Microsoft",
"version":"14.0.4"

3

"5":{
"type":"software",
"name":"Java",

"vendor":"Oracle",
"version":"1.8.0_40"

4.3. Binary Obfuscation Type

Type Name: binary-obfuscation

The binary-obfuscation type captures metadata on the methods that a binary may be obfuscated with, such as executable packers or XOR
encryption. This includes obfuscation of the entire binary as well as its constituent pieces, such as strings.

33

4.3.1. Properties

Property Name

method (required)

Type

open-vocab

Description

Captures the method used to obfuscate the binary. The value for this property
SHOULD come from the obfuscation-method-ov vocabulary.

layer_order (optional)

integer

Captures the ordering of the obfuscation method with respect to other obfuscation
methods (if known), as a positive integer. For example, if a binary was packed and
then XOR encrypted, the layer_order property of the packing layer would equal 1
and the layer_order property of the XOR encryption layer would equal 2.

encryption_algorithm (optional)

open-vocab

Captures the name of the encryption algorithm used by the obfuscation method (if
applicable). The values for this property SHOULD come from the STIX
encryption-algo-ov vocabulary [STIX-Vocab1].

packer_name (optional) string Specifies the name of the packer (if applicable).

packer_version (optional) string Specifies the version of the packer (if applicable).
packer_entry_point (optional) hex Specifies the entry point address of the packer (if applicable).
packer_signature (optional) string Specifies the matching signature detected for the packer (if applicable).

Examples

{
"type":"package",

"id":"package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",

"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-instance",

"id":"malware-instance--19863c16-503e-493f-8841-16c68e39c26e",

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.i6x0bew9m4c

"instance_object_refs": ["0"],
"static_features": {
"obfuscation_methods": [

{
"method" : "packing",
"layer_order":1,
"packer_name": "UPX"

3

{
"method" : "encryption”,
"layer_order":2,
"encryption_algorithm":"XOR"

}

4.4. Capability Type
Type Name: capability

The capability type captures details of a Capability implemented by a malware instance. A Capability corresponds to a high-level ability that a
malware instance possesses, such as persistence or anti-behavioral analysis. Malware Instances and Families may share Capabilities; however,
the associated Behaviors implementing the Capabilities will often differ. Therefore, Capabilities are defined inline to Malware Instances and
Malware Families rather than as top level objects that are subsequently referenced.

4.4.1. Properties

Property Name Type Description

name (required) open-vocab Captures the name of the Capability.

The values for this property SHOULD come from the capability-ov vocabulary.
When used as part of a refined Capability, the values for this property SHOULD
come from the refined-capability-ov vocabulary.

35

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.jgnh21ezvcbg
https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.ia0m0qs9pold

refined_capabilities
(optional)

list of type capability

Captures a refinement of the Capability, recursively using capability.

description (optional)

string

Captures a textual description of the Capability.

attributes (optional)

dictionary

Captures attributes of the Capability as key/value pairs. Each key in the dictionary
MUST be a string that captures the name of the attribute and SHOULD come from
the common-attribute-ov vocabulary. Each corresponding key value MUST be a
string or list of strings that captures the corresponding attribute values.

behavior_refs
(optional)

list of type identifier

Captures the IDs of Behaviors that implement the Capability. Each referenced entity
MUST be of type behavior and each Behavior MUST be present in the current
Package.

references (optional)

list of type
external-reference

Captures external references to ATT&CK Tactics and other entities that may be
associated with the Capability.

Examples

{
"type":"package",

"id":"package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",

"schema_version":"5.0",

"maec_objects":[

{

"type":"malware-instance",
"id":"malware-instance--19863c16-503e-493f-8841-16c68e39c26e",
"instance_object_refs":[

ngn

1,

"labels": [
"mass-mailer",
"worm"

1,
"capabilities":[

{

"name" :"persistence”,
"refined_capabilities":[

{

36

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.8smf1k1gdjf2

n,n

"name": "continuous-execution"
s
o o

"name":"system-re-infection"

}
1B o

"description”:"The instance persists after a system reboot.",
"attributes":{
"persistence-scope":[
"self",
"other malware/components"”

15 o

"technique":"creates registry key"

¥

"behavior_refs":[
"behavior--1",
"behavior--2"

1,
"references":[
{
"source_name" :"ATT&CK",
"description":"Persistence"”,
"url":"https://attack.mitre.org/wiki/Persistence”
}
]

4.5. Dynamic Features Type
Type Name: dynamic-features

The dynamic-features type captures the dynamic features (i.e., those associated with the semantics of the executed code, of a malware
instance).

37

4.5.1. Properties

Property Name

behavior_refs (optional)

Type

list of type identifier

Description

Captures the IDs of Behaviors exhibited by the Malware Instance.

Each referenced entity MUST be of type behavior.

action_refs (optional)

list of type identifier

Captures the IDs of Actions discovered for the Malware Instance.

Each referenced entity MUST be of type malware-action. This property is
intended for capturing Actions that are discovered through static analysis,
reverse engineering, or other methods and therefore MUST NOT be used to
reference any of the Actions that are included in the process_tree property.
As such, the Actions referenced by this property are mutually exclusive with
respect to the Actions referenced by the process_tree property.

network_traffic_refs
(optional)

list of type object-ref

Captures any network traffic recorded for the Malware Instance. The Object(s)
referenced MUST be of STIX Cyber Observable type network-traffic OR
artifact (for including binaries of captured traffic such as PCAPs) and MUST
be specified in the observable_objects property of the Package.

process_tree (optional)

list of type
process-tree-node

Captures the Process Tree observed during the execution of the Malware
Instance.

This property may also capture Actions that are executed by a process and
captured by dynamic analysis/sandboxing and therefore MUST NOT be used to
reference any of the Actions that are included in the action_refs property. As
such, the Actions referenced by this property are mutually exclusive with
respect to the Actions referenced by the action_refs property.

38

4.5.2. Requirements
e At least one of behavior_refs or action_refs or network_traffic_refs or process_tree MUST be included when using this type.

Examples

{
"type":"package",
"id": "package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",
"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-instance",
"id":"malware-instance--19863c16-503e-493f-8841-16c68e39c26e",
"instance_object_refs": ["0"],
"dynamic_features": {
"behavior_refs": ["behavior--1", "behavior--2"],
"action_refs": ["malware-action--1", "malware-action--2"],
"network_traffic_refs": ["4"],
"process_tree": [
{
"process_ref":"1",
"ordinal_position":@
}
]
}
¥
{
"type":"behavior",
"id":"behavior--1",
"name" :"persist after system reboot",
"description":"System reboot persistence via registry startup",
"action_refs": ["malware-action--1"]
}
1,
"observable_objects": {
"o": {
"type": "file",
"hashes": {"MD5": "66e2ea4@dc71d5ba701574ea215a81f1"}
s
v g

"type": "process",

39

"pid": "1234"

s
2" {
"type": "process",
"pid": "2345"
s
"3": {
"type": "domain-name",
"value": "example.com"
s
4" {
"type": "network-traffic",
"dst_ref": "0",
"protocols”: [
"ipva",
"tep”,
'http"
]
}

4.6. Field Data Type

Type Name: field-data

The field-data type captures field data, such as the time that the malware instance or family was first observed, associated with a malware

instance or family.

4.6.1. Properties

Property Name

delivery_vectors
(optional)

Type

list of type open-vocab

Description

Captures the vectors used to distribute/deploy the Malware Instance. The values for
this property SHOULD come from the delivery-vector-ov vocabulary.

first_seen (optional)

timestamp

Captures the date/time that the malware instance was first seen by the producer of
the Malware Instance Object.

40

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.ayjr5vg5dz0b

last_seen (optional) timestamp Captures the date/time that the malware instance was last seen by producer of the
Malware Instance Object.

4.6.2. Requirements

® At least one of delivery_vectors or first_seen or last_seen MUST be included when using this type.

Examples

{
"type":"package",
"id":"package--6864e55f-5f5f-451a-843e-8c66913aell6",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-family",
"id":"malware-family--8ff5814d-0c2e-5601-b8a5-d0032bbo3847",
"name": {
"value": "Cryptolocker",
"confidence": 85
s
"field_data": {
"delivery_vectors":["trojanized-1link", "downloader"],
"first_seen":"2013-09-05T00:00:00Z",
"last_seen":"2017-01-05T00:00:00Z"

}
¥

4.7. Malware Development Environment Type

Type Name: malware-development-environment

The malware-development-environment captures details of the development environment used in developing the malware instance, such as
information on any tools that were used.

4.7.1. Properties

Property Name Type Description

tool_refs (optional) list of type object-ref | References the tools used in the development of the malware instance.

The Objects referenced MUST be of STIX Cyber Observable type software and
MUST be specified in the observable_objects property of the Package.

debugging file_refs list of type object-ref | References debugging files associated with the malware instance, such as PDB files.
(optional)
The Objects referenced MUST be of STIX Cyber Observable type file and MUST
be specified in the observable_objects property of the Package.

4.7.2. Requirements

® At least one of tool_refs or debugging file_refs MUST be included when using this type.

Examples

{
"type":"package",
"id":"package--2f5d32d0-2f41-48al-b272-fa5f0390dbd3",
"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-instance",
"id":"malware-instance--90153d4d-092e-1601-b8a5-11312bb0388d",
"instance_object_refs":["0"],
"name": {
"value": "RansomW.cb",
"confidence": 20
Ts

"static_features": [

"development_environment": [

{

42

"tool_refs": ["4"]

}

]
I
]
}
1,

"observable objects": {
"0": {
"type": "file",

"hashes": {"MD5": "66e2ead4@dc71d5ba701574ea215a81f1"}

s

II4II: {
"type":"software",
"name": "gcc"

}

4.8. Name Type

Type Name: name

The name type captures the name of a malware instance, family, or alias, as well as the source and relative confidence in the name.

4.8.1. Properties

Property Name

value (required)

Type

string

Description

Captures the name of the malware instance, family, or alias.

source (optional)

external-reference

Captures the internal or external source of the value property (i.e., the name).

confidence (optional)

integer

Captures the relative confidence in the accuracy of the assigned name. The
confidence value MUST be a number in the range of 0-100.

Examples

{

43

"type":"package",

"id":"package--d7b38d7d-f587-4556-a786-0cd2eel@bf5d",

"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-instance",
"id":"malware-instance--90153d4d-092e-1601-b8a5-11312bb0388d",
"name": {
"value": "Conficker.A",
"source": {
"source_name": "Conficker Threat Intel",
"description": "Analysis details of Conficker by Amanda Analyst",
"url": "http://www.example.com/threat-report.pdf"
s
"confidence": 80
}
}

4.9. Process Tree Node Type

Type Name: process-tree-node

The process-tree-node type captures a single node in a process tree, as recorded for a Malware Instance.

4.9.1. Properties

Property Name Type Description

process_ref (required) object-ref References the Process Object, contained in the Package, which represents the
process and its relevant metadata.
The Object referenced MUST be of STIX Cyber Observable type process and
MUST be specified in the observable_objects property of the Package.

parent_action_ref identifier Captures the ID of the Action that created or injected the process.

(optional)

44

http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

The referenced entity MUST be of type malware-action.

ordinal_position integer Captures the ordinal position of the process with respect to the other processes
(optional) spawned or injected by the malware. This value MUST be a non-negative integer.
For specifying the root process of the process tree, a value of @ MUST be used.

initiated_action_refs list of type identifier Captures the IDs of the Actions initiated by the process.
(optional)

Each referenced entity MUST be of type malware-action.

Examples

{
"type":"package",
"id": "package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",
"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-instance",
"id":"malware-instance--19863c16-503e-493f-8841-16c68e39c26e",
"instance_object_refs": ["0"],
"dynamic_features": {
"behavior_refs": ["behavior--1", "behavior--2"],
"process_tree": [
{
"process_ref":"1",
"ordinal_position":0
}
]
}
}
1,
"observable_objects": {
"o": {
"type": "file",
"hashes": {"MD5": "66e2ead4@dc71d5ba701574ea215a81f1"}
¥
v g

"type": "process",

45

s

2" {
"type": "process",
"pid": 2345

s

"3": {
"type": "process",
"pid": 5678

}

4.10. Relationship Distance Type

Type Name: relationship-distance

The relationship-distance type captures a distance score and associated metadata between the source and target in a MAEC relationship.

4.10.1. Properties

Property Name Type Description
distance_score float Captures the distance score between the source and target in the relationship. This is most commonly
(required) represented as a floating point value between zero and one (with a higher value representing a

greater distance).

algorithm_name string Captures the name of the algorithm or tool used in calculating the distance score specified in the
(optional) distance_score property.

algorithm_version string Captures the version of the algorithm or tool used in calculating the distance score specified in the
(optional) distance_score property.

metadata (optional) dictionary Specifies a dictionary of additional metadata around the distance score, as a set of key/value pairs.

Dictionary keys and their corresponding values MUST be of type string.

Examples

46

"type":"package",
"id":"package--0987dac8-2316-52c6-6fbc-074ef8876fdd",
"schema_version":"5.0",

"maec_objects": [

{
"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs": ["0"]
s
{
"type":"malware-instance",
"id":"malware-instance--bacd8340-83bd-94ad-0111-1f029304ced90",
"instance_object_refs": ["1"]
}
1,
"observable_objects": {
"o": {
"type":"file",
"hashes": {"MD5":"4472ea40dc71e5bb701574ea215a81al"}
s
1" {
"type":"file",
"hashes": {"MD5":"39C8E9953FE8S8EA4OFF1C59876EQE2F28"}
}
s
"relationships": [
{
"type":"relationship”,
"source_ref":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"target_ref":"malware-instance--bacd8340-83bd-94ad-0111-1f029304ced90",
"relationship_type":"has-distance",
"metadata": {
"distance": {
"distance_score":0.92,
"algorithm_name":"clusterAlgorithm-abc",
"algorithm_version":"6.1",
"metadata":{"foo":"bar"}
}
}
}
]

47

4.11. Signature Metadata Type

Type Name: signature-metadata

The signature-metadata type captures metadata associated with a signature (for example, a YARA rule) that may have been triggered during
the analysis of a malware instance.

4.11.1. Properties

Property Name Type Description

signature_type string Captures the type of the signature, i.e., the language or platform it is written for. For

(required) example, “snort”, for the Snort network intrusion detection system (NIDS). The name of the
language or platform SHOULD be in lowercase, with any whitespace replaced with dashes
()

name (optional) string Captures the name provided for the signature (if applicable).

description (optional) | string Captures a textual description of the signature.

author (optional) string Captures the name of the author of the signature.

reference (optional)

external-reference

Captures an external reference associated with the signature.

severity (optional)

string

Captures a measure of severity associated with the detection of the signature.

external_id (optional)

string

Captures an external identifier associated with the signature.

4.11.2. Requirements

® |n addition to signature_type, at least one of the name or description properties MUST be included when using this type.

48

Examples

{
"type":"package",
"id":"package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",
"schema_version":"5.0",
"maec_objects": [
{
"type":"malware-instance",
"id":"malware-instance--19863c16-503e-493f-8841-16c68e39c26e",
"instance_object_refs": ["0"],
"triggered_signatures": [
{
"signature_type":"yara",
"description":"Ransomware",
"author":"John Doe",
"reference"”:{
"url": "http://foo.bar"
3
"severity":"9.0"
3
{
"signature_type":"cuckoo",
"description":"Anti-sandbox sleep",
"author":"Jane Doe",
"reference":{
"url":"http://bar.foo"
s
"severity":"5.0"
b
1
}
1
}

4.12. Static Features Type
Type Name: static-features

The static-features type captures features associated with a malware instance (a binary file) not related to the semantics of the code.

49

http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://foo.bar/

4.12.1. Properties

Property Name

strings (optional)

Type

list of type string

Description

Captures any strings that were extracted from the malware
instance.

obfuscation_methods
(optional)

list of type binary-obfuscation

Captures metadata associated with methods used to
obfuscate the malware instance (e.g., packers, encryptors).

certificates (optional)

list of type object-ref

References any software certificates used to sign the
malware instance.

The Objects referenced MUST be of STIX Cyber Observable
type x509-certificate and MUST be specified in the
observable_objects property of the Package.

file_headers (optional)

list of type object-ref

References any file headers (e.g., PE file headers) extracted
from the malware instance.

The Objects referenced MUST be of STIX Cyber Observable
type file and MUST be specified in the
observable_objects property of the Package.

configuration_parameters
(optional)

dictionary

Captures any configuration parameters specified for the
malware instance.

Each key in the dictionary MUST be of type string and
SHOULD come from the
malware-configuration-parameter-ov vocabulary, which
is based on the data reported by the Malware Configuration
Parser (MWCP) tool developed by the Department of

50

Defense Cyber Crime Center (DC3). Each corresponding
key value MUST also be of type string, and should capture
the actual value of the configuration parameter.

development_environment malware-development-environment Captures details of the development environment used to
(optional) create the malware instance.

4.12.2. Requirements

® At least one of strings or obfuscation_methods or certificates or file_headers or configuration_parameters or
development_environment properties MUST be included when using this type.

Examples

{
"type":"package",
"id":"package--b7be50bd-6348-4226-bef9-4c3510f698f7",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-instance",
"id":"malware-instance--90153d4d-092e-1601-b8a5-11312bb0388d",
"name": {
"value": "Malcode.13",
"confidence": 50
¥
"static_features": {
"strings": ["This string is key.", "This is another string in the instance"],
"obfuscation_methods": [

{
"method" : "packing",
"ordering":1,
"packer_name":"UPX"

3

{
"method":"encryption”,
"ordering":1,
"encryption_algorithm":"XOR"

¥

1,
51

"configuration_parameters": [

{
"name" : "magic-number",
"value":"0x674dfe60abee3234"
}s
{
"name":"directory",
"value":"C:\\Users\\<username>\\Desktop"
}

1,

"development_environment": {
"tool_refs": ["4"],
"debugging file refs": ["6"]

4.13. Cyber Observable Object Extensions

The following are MAEC-specific extensions defined for STIX Cyber Observable Objects that are used in the context of MAEC.

4.13.1. AV Classification Extension

Type Name: x-maec-avclass

The x-maec-avclass extension captures information on anti-virus (AV) tool classifications for a particular file. Note that unlike other extensions,
the base type of this extension is 1ist, with each entry in the list (of type dictionary) representing a single AV classification. This custom
extension MUST only be used in conjunction with the STIX Cyber Observable File Object [STIX-4].

4.13.1.1. Properties

Property Name Description

scan_date (required) timestamp Captures the date and time of the scan. This property can be used to track how scans
change over time.

52

submission_date (optional) timestamp Captures the date and time that the binary was submitted for scanning.

is_detected (required) boolean Captures whether the AV tool specified in the x-maec-avclass extension has detected
the malware instance.

classification_name (optional) string Captures the classification assigned to the malware instance by the AV tool.

av_name (optional) string Captures the name of the AV tool that generated the classification.

av_vendor (optional) string Captures the name of the vendor of the AV tool that generated the classification.

av_version (optional) string Captures the version of the AV tool that generated the classification.

av_engine_version (optional) string Captures the version of the AV engine used by the AV tool that generated the
classification.

av_definition_version (optional) | string Captures the version of the AV definitions used by the AV tool that generated the

classification.

Examples

{

"type":"package",

"id":"package--e2ea70f1-02af-4560-8712-34e1d138393e",

"schema_version":"5.0",
"observable objects": {

llell: {
"type":"file",
"name":"a92e5b2bae.exe",

"hashes": {"MD5":"a92e5b2bae@b4b3a3d81c85610b95cd4"},

"extensions": {
"X-maec-avclass": [

{

"scan_date":"2010-05-15T03:38:44Z",
"is_detected":false,

"av_name":"Security Essentials",

"av_vendor":"Microsoft",

53

"av_engine_version":"4.2.3",
"av_definition_version":"032415-0011"

¥

{
"scan_date":"2010-05-18T12:43:127",
"is_detected":true,
"classification_name":"Trojan.Zeus",
"av_vendor": "McAfee"

}

5. MAEC Top Level Objects

This section defines the set of MAEC top-level objects (TLOs), i.e., those entities captured at the top level of a MAEC Package (see Section 7).
Properties common to all top-level objects are highlighted in their respective property tables in grey.

5.1. Behavior
Type Name: behavior

A Behavior corresponds to the specific purpose behind a particular snippet of code, as executed by a malware instance. Examples include
keylogging, detecting a virtual machine, and installing a backdoor. Behaviors may be composed of one or more Malware Actions, thereby
providing context to these Actions.

5.1.1. Properties

Property Name Type Description
type (required) string The value of this property MUST be behavior.
id (required) identifier Specifies a unique ID for the Behavior.

54

name (required)

open-vocab

Captures the name of the Behavior.

The values for this property SHOULD come from the
behavior-ov open vocabulary.

description (optional) string Specifies a textual description of the Behavior.

timestamp (optional) timestamp Captures the local or relative time at which the Behavior
occurred or was observed.

attributes (optional) dictionary Captures attributes of the Behavior as name/value pairs.

Dictionary keys used in this property SHOULD come from the
common-attribute-ov vocabulary. Each corresponding key
value MUST be of type string and SHOULD come from an
associated vocabulary, if applicable. For example, if the key is
encryption-algorithm, its corresponding value SHOULD
come from the STIX encryption-algo-ov vocabulary
[STIX-Vocab1].

action_refs (optional)

list of type identifier

Captures Actions that serve as an implementation of the
Behavior. Each list item specifies the unique ID of the Action
being referenced; accordingly, each referenced item MUST be
of type malware-action.

Each Action MUST be present in the current Package. The
ordering of the references in the list denotes the sequential
ordering of the Actions with respect to the Behavior; that is,
Actions at the beginning of the list MUST have occurred before
those later in the list.

55

technique_refs (optional) list of type external-reference References any techniques used to implement the Behavior; for
example, DLL Search Order Hijacking. Each reference SHOULD
point to a valid ATT&CK [ATT&CK] Technique or similar entity.

5.1.2. Relationships

The table shows relationships explicitly defined between the Behavior object and other objects. Relationships are not restricted to those listed
below.

Embedded Relationships

action_refs malware-action

Common Relationships

related-to

Source Relationship Type Description

behavior dependent-on behavior Specifies that the behavior is dependent on the successful
execution of another.

behavior discovered-by software Specifies that the behavior was discovered by a particular tool, as
a represented by a STIX Cyber Observable Software Object.

Examples

{
"type":"package",
"id":"package--2d42dac8-c416-42c6-bc5c-7b6dcf576fc5",
"schema_version":"5.0",
"maec_objects":[
{
"type":"behavior",
"id":"behavior--2099d4cl1-0e8a-49d2-8d32-f0427el1ff817",
"name":"persist-after-system-reboot"”,
"action_refs":[
"malware-action--c095f1ab-0847-4d89-92ef-010e6ed39c20",
"malware-action--80f3f63a-d5c9-4599-b9%e4-2a2bd7210736"

56

1,
"attributes":{
"persistence-scope” : "system wide"
¥
"technique_refs":[

{

"source_name":"att&ck",
won

"description":"registry run keys/start folder",
"external_id":"t1060"

}
1
¥
{
"type":"malware-action",
"id":"malware-action--c@95f1lab-0847-4d89-92ef-010e6ed39c20",
"name":"create file",
"output_object_refs":[
g
1
s
{ n n

"type":"malware-action",
"id":"malware-action--80f3f63a-d5c9-4599-b9e4-2a2bd7210736",
"name":"create registry key value",
"output_object_refs":[
nyn
]
}
1,
"observable_objects":{
"o":{
"type":"file",
"hashes": {

"MD5":"4472ea40dc71e5bb701574ea215a81al1"
¥
"size":25536,
"name":"foo.d11",
"parent_directory_ref":"2"
¥
"1
"type":"windows-registry-key",
"key" :"HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run",
"values":[

{

"name" : ||Foon’

"value":"C:\\Windows\\System32\foo.d11"

}
1
¥
"2"
"type":"directory",
"path":"C:\\Windows\\System32"
}
}
}
5.2. Collection

Type Name: collection

A Collection captures a set of MAEC entities (e.g., Malware Instances, Behaviors, etc.) or STIX Cyber Observables that are related or associated

in some way.

5.2.1. Properties

Property Name Type Description

type (required) string The value of this property MUST be collection.
id (required) identifier Specifies a unique ID for the Collection.
description (optional) string Specifies a textual description of the Collection.

association_type (required)

open-vocab

Specifies how the contents of the Collection are associated. The values
for this property SHOULD come from the entity-association-ov
vocabulary.

58

entity_refs (optional)

list of type identifier

Specifies a set of one or more MAEC entities that are contained in the
Collection. Each item specifies the unique ID of the entity being
referenced. All entities MUST be present in the current Package.

This property is mutually exclusive with regard to the observable_refs
property and both properties MUST NOT be present in the same
Collection.

observable_refs (optional)

list of type object-ref

Specifies a set of one or more STIX Cyber Observable Objects that are
contained in the Collection. All Cyber Observable Objects MUST be
present in the current Package.

This property is mutually exclusive with regard to the entity_refs
property and both properties MUST NOT be present in the same
Collection.

5.2.2. Requirements

e One of entity_refs or observable_refs MUST be included when using this object.

5.2.3. Relationships

The table shows relationships explicitly defined between the Collection object and other objects. Relationships are not restricted to those listed

below.

Embedded Relationships

entity_refs

behavior, collection, malware-action, malware-family, malware-instance,
relationship

observable_refs

artifact, autonomous-system, directory, domain-name, email-addr, email-message,
file, ipv4-addr, ipv6-addr, mac-addr, mutex, network-traffic, process, software
url, user-account, windows-registry-key, x509-certificate

59

Common Relationships

related-to

Examples

{
"type":"package",
"id":"package--12fbdac8-c416-42c6-cc5c-7b84cf576fc5",
"schema_version":"5.0",
"maec_objects": [

{

"type":"collection",
"id":"collection--739df9c1-93ab-49d2-73f0-f0427e1ff817",

nw,n

"association_type":"observed together",

"entity_refs": [
"malware-instance--4c46cb42-8e83-4bbb-acf8-e09c1311093b",
"malware-instance--f19859bf-26e4-415e-albe-41c0486d406d",
"malware-instance--4a58d70a-9d25-4c¢80-a114-28036705d026"

5.3. Malware Action
Type Name: malware-action

A Malware Action represents an abstraction on a system-level API call (or similar entity) called by the malware instance during its execution, and
thereby corresponds to the lowest-level dynamic operation of the malware instance. Actions do not contain any associated context as to why they
were performed, as this level of detail and abstraction is documented by Behaviors. Examples of Actions include the creation of a particular file on
disk and the opening of a port. Actions are commonly captured and reported by dynamic malware analysis tools (i.e., sandboxes).

5.3.1. Properties

Property Name Type Description

60

type (required) string The value of this property MUST be malware-action.

id (required) identifier Specifies a unique ID for the Malware Action.

name (required) open-vocab Captures the name of the Malware Action. The values for this
property SHOULD come from the malware-action-ov
vocabulary.

is_successful (optional) boolean Specifies whether the Malware Action was successful in its
execution.

description (optional) string Captures a basic textual description of the Malware Action.

timestamp (optional) timestamp Captures the local or relative time(s) at which the Malware

Action occurred or was observed.

input_object_refs (optional) list of type object-ref References STIX Observable Objects used as input(s) to the
Malware Action. The Object(s) referenced MUST be specified in
the observable_objects property of the Package.

output_object_refs (optional) | list of type object-ref References STIX Observable Objects resulting as output(s) from
the Malware Action. The Object(s) referenced MUST be
specified in the observable_objects property of the Package.

api_call (optional) api-call Captures attributes of the specific API call that was used to
implement the Malware Action.

5.3.2. Relationships

The table shows relationships explicitly defined between the Malware Action object and other objects. Relationships are not restricted to those
listed below.

Embedded Relationships

61

input_object_refs artifact, autonomous-system, directory, domain-name, email-addr, email-message
file, ipv4-addr, ipv6-addr, mac-addr, mutex, network-traffic, process, software
url, user-account, windows-registry-key, x509-certificate

output_object_refs artifact, autonomous-system, directory, domain-name, email-addr, email-message
file, ipv4-addr, ipv6-addr, mac-addr, mutex, network-traffic, process, software
url, user-account, windows-registry-key, x509-certificate

Common Relationships

related-to
Source Relationship Type Target Description
malware-action dependent-on malware-action Specifies that the action is dependent on the successful execution
of another.
malware-action discovered-by software Specifies that the action was discovered by a particular tool, as a
represented by a STIX Cyber Observable Software Object.
Examples
Basic Create File Action
{

n,n

"type":"package",
"id":"package--7892dac8-c416-35c6-bc5c-7b6dcf576f91",
"schema_version":"5.0",

"maec_objects": [

{

"type":"malware-action",
"id":"malware-action--c@95f1ab-0847-4d89-92ef-010e6ed39c20",
"name":"create file",
"is_successful":true,
"output_object_refs": ["4"],
"timestamp": "2016-01-20T12:31:12.12345Z"
}
1,
"observable objects": {
"4": {
"type":"file",
"hashes":{"MD5":"4472ea40dc71e5bb701574ea215a81al1"},

"size":25536,
"name":"foo.d1l"

}
}
}

Read Registry Key Value Action with Implementation

{
"type":"package",
"id":"package--0072dac8-c416-35c6-bc5c-7b6dcf576def",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-action",
"id":"malware-action--e754b078-4185-4eba-a06c-7b2b6ce6bdoas",
"name":"read registry key value",
"input_object_refs": ["3"],
"implementation": {"api_function_name" : "RegQueryValueEx"},
"timestamp": "2016-01-20T12:31:12.12345Z"
}
1,
"observable_objects": {
"3": {
"type":"windows-registry-key",
"key":"hkey local_machine\\system\\bar\\foo",
"values": [

{

n,n

"name":"Foo",
"data":"qwerty",
"data_type":"REG_SZ"

}
}

Load Library Action

{
"type":"package",
"id":"package--c10f51a5-8bcb-4f94-bfa2-8a81db056926",
"schema_version":"5.0",
"maec_objects":[

{

63

"id":"action--7fcf121f-e66e-418a-beal-ce8e8b642da9",
"type":"malware-action",
"name":"load library",
"timestamp":"2017-08-04T12:57:36.143937",
"input_object_refs":[
ng

]

}

1,

"observable_objects":{
Ilell : {
"type":"file",
"name":"advapi32.dll"

}
}
}

5.4. Malware Family
Type Name: malware-family

A Malware Family is a set of malware instances that are related by common authorship and/or lineage. Malware Families are often named and
may have components such as strings that are common across all members of the family.

5.4.1. Properties

Property Name Type Description

type (required) string The value of this property MUST be malware-family.

id (required) identifier Specifies a unique ID for the Malware Family.

name (required) name Captures the name of the Malware Family, as specified by the
producer of the MAEC Package.

aliases (optional)

list of type name

Captures aliases for the Malware Family. For cases where the
alias comes from an external source, the name of the source
SHOULD be provided.

labels (optional)

list of type open-vocab

Specifies one or more commonly accepted labels to describe the
members of the Malware Family, e.g. “worm.”

The values for this property SHOULD come from the
malware-label-ov vocabulary.

description (optional)

string

Captures a basic, textual description of the Malware Family.

field_data (optional)

field-data

Specifies field data about the Malware Family, such as first seen
and last seen dates, as well as delivery vectors.

common_strings (optional)

list of type string

Specifies any strings common to all members of the Malware
Family.

common_capabilities
(optional)

list of type capability

Specifies a set of one or more Capabilities that are common to
all members of the Malware Family.

common_code_refs (optional)

list of type object-ref

References code snippets that are shared between all of the
members of the Malware Family.

The Object(s) referenced MUST be of STIX Cyber Observable
type artifact and MUST be specified in the
observable_objects property of the Package.

common_behavior_refs
(optional)

list of type identifier

Specifies a set of one or more Behaviors that are common to all
of the members of the Malware Family. Each item specifies the
unique ID of the Behavior being referenced; accordingly, each
referenced item MUST be of type behavior.

65

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.2p72jp2sgdc8

references (optional) list of type external-reference Captures external references to the Malware Family.

5.4.2. Relationships

These are the relationships explicitly defined between the Malware Family object and other objects. Relationships are not restricted to those listed
below.

Embedded Relationships

common_code_refs artifact

common_behavior_refs behavior

Common Relationships

related-to

Source Relationship Type Description

malware-family dropped-by malware-family Indicates that the source malware family is dropped by the target
malware family.

malware-family derived-from malware-family Indicates that the code base of the source malware family is a
derived from the code base of the target malware family.

Examples
Basic Malware Family

{
"type":"package",
"id":"package--f53adac8-c416-42c6-6fbc-7b6ef8876fc5",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-family",
"id":"malware-family--df91014d-0c2e-4e01-b8a5-d8c32bbo38e6",
“name": {

66

w,n

"value":"Zeus",
"confidence":90

]
¥

Expanded Malware Family

{
"type":"package",
"id":"package--b73adac8-3416-66c6-6fbc-096ef8876fc5",
"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-family",
"id":"malware-family--df91014d-0c2e-4e01-b8a5-d8c32bbo38e6",
"name": {
"value":"Zeus",
"confidence":90
s
"aliases": [
{
"value":"ZBot",
"source":"McAfee",
"confidence":80
}
1,
"labels": ["bot", "downloader", "trojan"],
"common_capabilities": [
{
"name":"persistence”,
"refined_capabilities":[{"name":"continuous execution"}]
¥
1,
"common_behavior_refs": ["behavior--ac15b814-868b-43fd-a89b-91e463293f2b"]
s
{

"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs": ["0"],
"name": {

"value":"Zeus 1.3",

"confidence":80

67

3

{
"type":"behavior",
"id":"behavior--acl15b814-868b-43fd-a89b-91e463293f2b",
"name":"persist after system reboot"
}
1,
"observable objects": {
"o": {
"type":"file",
"hashes": {"MD5":"4472ea40dc71e5bb701574ea215a81al"},
"size":25536,
"name":"foo.d1l"
}
¥
"relationships": [
{
"type":"relationship”,
"id":"relationship--74ae7da8-784d-4a00-aadl-e40c65c78b98",
"source_ref":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"target_ref":"malware-family--df91014d-0c2e-4e01-b8a5-d8c32bbo38e6",
"relationship_type":"variant-of"
}
1

Multiple Related Malware Families

{
"type":"package",
"schema_version":"5.0",
"maec_objects": [

{
"type":"malware-family",
"id":"malware-family--07b74c48-d2ef-4e51-943f-ac37274c9a00",
"name": {
"value":"Gameover Zeus",
"confidence":80
}
¥
{
"type":"malware-family",

"id":"malware-family--e9855981-1e45-4ef1-8989-1272052b0ed5",

68

"name": {

"value":"Cryptolocker",
"confidence":80

}
}
1,
"relationships": [
{
"type":"relationship”,
"id":"relationship--151035ce-95bb-4716-2046-7487055f2f7c",
"source_ref":"malware-family--e9855981-1e45-4ef1-8989-1272052b0ed5",
"target_ref":"malware-family--07b74c48-d2ef-4e51-943f-ac37274c9a00",
"relationship_type":"dropped-by"
}

]
}

5.5. Malware Instance
Type Name: malware-instance

A Malware Instance can be thought of as a single member of a Malware Family that is typically packaged as a binary. This type allows for the
characterization of the binaries associated with a Malware Instance along with any corresponding analyses, associated Capabilities, Behaviors,
and Actions, and relationships to other Malware Instances.

5.5.1. Properties

Property Name Type Description

type (required) string The value of this property MUST be malware-instance.

id (required) identifier Specifies a unique ID for the Malware Instance.
instance_object_refs (required) list of type object-ref References the Cyber Observable Objects that characterize the

packaged code (typically a binary) associated with the Malware
Instance Object. For most use cases, the object referenced
SHOULD be of STIX Cyber Observable type file. Objects

referenced MUST be specified in the observable_objects
property of the Package.

For cases where multiple STIX Observable File Objects are
referenced by this property, each Object MUST have the same
hash value (via the hashes property) but MAY have different file
names (via the name property).

name (optional)

name

Captures the name of the Malware Instance, as specified by the
producer of the MAEC Package.

aliases (optional)

list of type name

Captures any aliases for the name of the Malware Instance, as
reported by sources other than the producer of the MAEC
document (e.g., AV vendors).

labels (optional)

list of type open-vocab

Specifies commonly accepted labels used to describe the
Malware Instance, e.g. “trojan.”

The values for this property SHOULD come from the
malware-label-ov vocabulary.

description (optional)

string

Captures a basic, textual description of the Malware Instance.

field_data (optional)

field-data

Specifies field data about the Malware Instance, such as first
seen and last seen dates, as well as delivery vectors.

os_execution_envs (optional)

list of type open-vocab

Specifies the operating systems that the Malware Instance
executes on.

The values for this property SHOULD come from the
operating-system-ov vocabulary.

70

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.2p72jp2sgdc8
https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.5ty0pt22g4dq

architecture_execution_envs
(optional)

list of type open-vocab

Specifies the processor architectures that the Malware Instance
executes on.

The values for this property SHOULD come from the
processor-architecture-ov vocabulary.

capabilities (optional)

list of type capability

Specifies a set of one or more Capabilities possessed by the
Malware Instance.

os_features (optional)

list of type open-vocab

Specifies any operating system-specific features used by the
Malware Instance. Each item in the list specifies a single feature.

The values for this property SHOULD come from the
os-features-ov vocabulary.

dynamic_features (optional)

dynamic-features

Captures features associated with the semantics of the code
executed by the Malware Instance, such as Malware Actions
and Behaviors.

static_features (optional)

static-features

Captures features associated with the binary that aren’t related
to the semantics of the executed code, such as strings and
packer information.

analysis_metadata (optional)

list of type

analysis-metadata

Captures metadata associated with the analyses performed on
the Malware Instance, such as the tools that were used.

triggered_signatures (optional)

list of type

signature-metadata

Captures metadata associated with any signatures or rules (e.g.,
YARA) that were triggered during the analysis of the malware
instance.

71

https://docs.google.com/document/d/1btZGq2H6xtSsjrweL6NMXx7KHg6B2yIZkz9nSe6JZfA/edit#heading=h.skxlt4ovcfsd

5.5.2. Relationships

The table shows relationships explicitly defined between the Malware Action object and other objects. Relationships are not restricted to those

listed below.

Embedded Relationships

instance_object_refs
Common Relationships
related-to

Source

malware-instance

Relationship Type

ancestor-of

Target

malware-instance

Description

Indicates that the source malware instance is an
ancestor of the target malware instance.

malware-instance

downloaded-by

malware-family,
malware-instance

Indicates that the source malware instance is
downloaded by the target malware instance or family.

malware-instance

dropped-by

malware-family,
malware-instance

Indicates that the source malware instance is dropped
by the target malware instance or family.

malware-instance

derived-from

malware-family,
malware-instance

Indicates that the code base of the source malware
instance is a derived from the code base of the target
malware instance or family.

malware-instance

extracted-from

malware-instance

Indicates that the source malware instance is extracted
from the target malware instance.

malware-instance

has-distance

malware-instance

Indicates that the source malware instance has some
distance (with respect to similarity) to the target malware
instance.

malware-instance

installed-by

malware-family,
malware-instance

Indicates that the source malware instance is installed
by the target malware instance or family.

72

malware-instance variant-of malware-family
malware-instance

Indicates that the source malware instance is a variant
of the target malware instance or family.

Examples

{
"type":"package",
"id":"package--773adac8-2316-42c6-6fbc-9cdef8876fc5",
"schema_version":"5.0",
"maec_objects": [

{

"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs": ["0"],
"name": {
"value":"Zeus 1.3",
"confidence":50
b
"capabilities": [{"name":"anti-detection"}],
"analysis_metadata”: [
{
"analysis_type":"in-depth",
"description”: "ran sample through sandbox"

}

}
1B

"observable_objects": {
"o": {
"type":"file",
"hashes":{"MD5":"4472ea40dc71e5bb701574ea215a81al1"},
"size":25536,
"name":"foo.d1l"

6. MAEC Relationships

MAEC Relationships are used to describe edges between MAEC top-level objects. Property information, relationship information, and examples

are provided for the MAEC Relationship Object below.

73

6.1. Relationship

Type Name: relationship

The Relationship Object captures relationships between two entities in a MAEC Package. If MAEC TLOs are considered "nodes" or "vertices" in
the graph, the Relationship Object represent "edges". Explicit relationships between MAEC Top Level Objects are provided above in Section 5.
Note that MAEC relationships cannot be the source or target of another relationship.

MAEC defines many relationship types to link together some TLOs. These relationships are contained in the "Relationships" table under each TLO
definition. Relationship types defined in the specification SHOULD be used to ensure consistency. An example of a specification-defined
relationship is that a malware-instance is downloaded-by a malware-instance. That relationship type is listed in the Relationships section of
the Malware Instance TLO definition.

MAEC also allows relationships from any TLO to any TLO that have not been defined in this specification. These relationships MAY use the
generic related-to relationship type or MAY use a custom relationship type. As an example, a user might want to link malware-instance
directly to a collection. They can do so using related-to to say that the Malware is related to the Collection but not describe how, or they
could use has-common-artifacts (a custom name they determined) to indicate more detail.

6.1.1. Common Relationships

Each MAEC top-level object has its own set of relationship types that are specified in the definition of that TLO. The following common relationship
types are defined for all TLOs.

Relationship Type Source Description

related-to <MAEC Top-Llevel Object> <MAEC Asserts a non-specific relationship
Top-Level between two TLOs. This relationship can
Object of be used when none of the other

any type> predefined relationships are appropriate.

74

6.1.2. Specification-Defined Relationship Summary

This relationship summary table is provided as a convenience. If there is a discrepancy between this table and the relationships defined with each

of the TLOs, then the relationships defined with the TLOs MUST be viewed as authoritative.

Source Type Target ‘
behavior dependent-on behavior
behavior discovered-by software

malware-action

dependent-on

malware-action

malware-action

discovered-by

software

malware-family

dropped-by

malware-family

malware-family

derived-from

malware-family

malware-instance

ancestor-of

malware-instance

malware-instance

has-distance

malware-instance

malware-instance

installed-by

malware-family

malware-instance

installed-by

malware-instance

malware-instance

derived-from

malware-family

malware-instance

derived-from

malware-instance

malware-instance

variant-of

malware-family

malware-instance

variant-of

malware-instance

malware-instance

downloaded-by

malware-family

75

malware-instance

downloaded-by

malware-instance

malware-instance

dropped-by

malware-family

malware-instance

dropped-by

malware-instance

malware-instance

extracted-from

malware-instance

6.1.3. Properties

Property Name Type Description

type (required) string The value of this property MUST be relationship.

id (required) identifier Specifies a unique ID for the Relationship.

source_ref (required) identifier Specifies a reference to the ID of the entity in the MAEC document
that corresponds to the source in the source-target relationship. The
referenced entity MUST be present in the current Package.

target_ref (required) identifier Specifies a reference to the ID of the entity in the MAEC document
that corresponds to the target in the source-target relationship. The
referenced entity MUST be present in the current Package.

timestamp (optional) timestamp Specifies a timestamp that states when the relationship was created.

relationship_type (required) | string

Specifies the type of relationship being expressed.

This value SHOULD be an exact value listed in the relationships for
the source and target top-level object, but MAY be any string. The
value of this field MUST be in ASCII and is limited to characters a-z
(lowercase ASCII), 0-9, and dash (-).

metadata (optional)

dictionary

Specifies a dictionary of additional metadata around the relationship.

76

Standard dictionary keys include the following:
e distance: used for capturing any distance related metadata.
The corresponding value for this key MUST be an object of
type relationship-distance.

Custom entries in the dictionary MAY also be included. Each custom
entry MUST have a key of type string and the key MUST be in
ASCII and is limited to characters a—z (lowercase ASCII), 0-9, and
dash (-). Each custom entry MUST have a key value that is a valid
common datatype, as defined in Section 3.

Examples

Malware Instances (downloaded)

{
"type":"package",

"id":"package--0987dac8-2316-52c6-6fbc-074ef8876fdd",

"schema_version":"5.0",
"maec_objects": [

"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",

"id":"malware-instance--bacd8340-83bd-94ad-0111-f029304ced90",

"hashes": {"MD5":"4472ea40@dc71e5bb701574ea215a81al"}

{
"type":"malware-instance",
"instance_object_refs": ["0"]
T,
{
"type":"malware-instance”,
"instance_object_refs": ["1"]
}
1,
"observable_objects": {
"o": {
"type":"file",
s
v g

"type":"file",

77

"hashes": {"MD5":"39C8E9953FE8EA4QFF1C59876EQE2F28"}

}
¥
"relationships": [
{
"type":"relationship”,
"id":"relationship--dcc7d8d4-91c0-412a-8d09-a0@30abl9edf1",
"source_ref":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"target_ref":"malware-instance--bacd8340-83bd-94ad-0111-1f029304ced90",
"relationship_type":"downloaded-by"
}
1

Malware Instances (distance score)

{
"type":"package",
"id":"package--dbd7a6ae-9dfc-48a2-9e6e-bf85f0c8613b",
"schema_version":"5.0",
"maec_objects": [
{
"type":"malware-instance",
"id":"malware-instance--c90945ec-ea66-4c61-9bd4-72e66aebd6de",
"instance_object_refs": ["0"]
¥
{
"type":"malware-instance",
"id":"malware-instance--ce40a5c7-f3af-4b64-90e2-2884194192ab",
"instance_object_refs": ["1"]
}
1,
"observable_objects": {
"o": {
"type":"file",
"hashes": {"MD5":"aafdea4@dc71e5bb701574ea215a81al"}
s
"1t {
"type":"file",
"hashes": {"MD5":"3ABCE9953FE8EA4OFF1C59876EQE2F28"}
}
¥
"relationships": [
{

78

"type":"relationship",
"id":"relationship--0bc99c9c-8765-4a36-b416-bbddel78b5a4",
"source_ref":"malware-instance--c90945ec-ea66-4c61-9bd4-72e66aebd64e",
"target_ref":"malware-instance--ced40a5c7-f3af-4b64-90e2-2884194192ab",
"relationship_type":"has-distance",
"metadata":{"distance":{"distance_score":"0.35",
"algorithm_name":"FooDist"}}

7. MAEC Package

Type Name: package

The package is the standard output format that can be used to capture one or more Malware Instances or Malware Families and the entities
associated with them: Capabilities, Behaviors, Actions, Cyber Observable Objects, and Collections and Relationships.

7.1. Properties

Property Name Type Description

type (required) string The value of this property MUST be package.

id (required) identifier Specifies a unique ID for this Package.

schema_version (required) string Specifies the version of the MAEC specification used to represent the

content in this Package. The value of this property MUST be 5.0 for
Packages containing MAEC Objects defined in this specification.

maec_objects (required) list of type <MAEC Object> Specifies MAEC Objects. Objects in this list MUST be valid MAEC
Top-level Objects.

observable_objects stix-observable-objects Specifies a dictionary of STIX Cyber Observable Objects relevant to the

(optional) MAEC Package.

79

This dictionary MUST contain all Cyber Observable Objects associated
with the MAEC Package, including those that are referenced by other
Cyber Observable Objects.

relationships (optional) list of type relationship Specifies a set of one or more MAEC Relationships.
Each entry in this list MUST be of type relationship.
Examples
{
"type":"package",
"id":"package--0987dac8-2316-52c6-6fbc-074ef8876fdd",
"schema_version":"5.0",
"maec_objects": [
{
"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs": ["0"]
¥
{
"type":"malware-instance",
"id":"malware-instance--bacd8340-83bd-94ad-0111-f029304ced90",
"instance_object_refs": ["1"]
}
1,
"observable_objects": {
"0": {
"type":"file",
"hashes": {"MD5":"4472ea40@dc71e5bb701574ea215a81al"}
¥
"1": {
"type":"file",
"hashes": {"MD5":"39C8E9953FE8EA4OFF1C59876EQE2F28"}
}
¥
"relationships": [
{

"type":"relationship",
"source_ref":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038eb",

80

"target_ref":"malware-instance--bacd8340-83bd-94ad-0111-f029304ced90",
"relationship_type":"downloaded-by"

8. Appendix - MAEC Idioms

Most of the MAEC 4.1 idioms are incorporated in the MAEC 5.0 specification as examples. Those that are not are given below.

8.1. Static Analysis Capture

This Idiom describes the process of capturing the results of static analysis performed on some malware instance, such as through the use of a PE
file analysis tool.

In this scenario, a malicious PE binary has been analyzed with the freely available PEID tool. This tool provides information about the entry point
and subsystem defined in the PE headers of the file, as well as the version of the linker used in linking the code.

"type":"package",
"id":"package--addadac8-ddf6-67c6-6fbc-8854f8876fc5",
"schema_version":"5.0",

"maec_objects":[

{

"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs":["0"],
"static_features":{
"file headers":["1"]
s
"analysis_metadata":[
{
"is_automated":"false",
"analysts":["Frankie Li"],
"analysis_type":"static",
"description”:"A basic static triage of the subject binary using PEiD.",
"tool_refs":["2"],
"references":[{"url":"http://www.sans.org/reading_room/whitepapers/malicious/

81

detailed-analysis-advanced-persistent-threat-malware_33814"}]
}
]
}
1,
"observable_objects":{
"o":{
"type":"file",
"hashes" :{"MD5" : "4EC00O27BEF4D7E1786A04D021FA8A67F"},
"size":196608,
"name" :"dg@@3_improve_8080 V132.exe",
"mime_type":"vnd.microsoft.portable-executable"
¥
"1
"type":"file",
"hashes" :{"MD5" : "4EC0027BEF4D7E1786A04D0O21FA8A67F"},
"mime_type":"vnd.microsoft.portable-executable",
"extensions":{
"windows-pebinary-ext":{

"pe_type":"exe",

"optional_header":{
"major_linker_version":6,
"minor_linker_version":0,
"address_of_entry point":36418,
"subsystem_hex":"02"

}

}

}

¥

"2" i {
"type":"software",
"name":"PEiD",
"version":"0.94"

}

}
}

8.2. Dynamic Analysis Capture

This Idiom describes the process of capturing the results of dynamic analysis performed on some malware instance, such as through the use of a
malware sandbox tool.

82

In this scenario, a malicious PE binary has been analyzed using the freely available ThreatExpert sandbox service, which provides information
about the low-level actions that the PE binary performs when executed. For the sake of brevity, the example below focuses on two actions
reported by the sandbox: the creation of a file, and the creation of a mutex.

{

"type":"package",

"id":"package--24afdacl-1536-d7c6-ffbc-ddb4f8876fc5",

"schema_version":"5.0",

"maec_objects":[

{

"type":"malware-instance",
"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs":["0"],
"dynamic_features":{

"action_refs":[
"malware-action--e6ecdda7-6a70-4320-8e54-5c956c778b7b",
"malware-action--e5e6fd60-77ea-4489-a801-f2b56bfcch22"

1

s
"analysis_metadata":[
{
"is_automated":"true",
"analysis_type":"dynamic",
"tool_refs":["1"]
}
1
¥
{
"type":"malware-action",
"id":"malware-action--e6ecdda7-6a70-4320-8e54-5c956c778b7b",
"name":"create file",
"output_object_refs":["2"]
¥
{
"type":"malware-action",
"id":"malware-action--e5e6fd60-77ea-4489-a801-f2b56bfccb22",
"name":"create mutex",
"output_object_refs":["3"]
¥
1,
"observable_objects":{
"0": {

"type":"file",

"hashes":{
"MD5" : "B6C39FF68346DCC8B67AA060DEFE40C2",
"SHA1" : "D55BOFB96FAD96D203D10850469489FCO3E6F2F7"

s
"size":210564,

"mime_type":"vnd.microsoft.portable-executable”

s
"1 {
"type":"software",
"name":"ThreatExpert",
"vendor":"ThreatExpert"
s
2" {
"type":"file",
"name":"Zcxaxz.exe",
"size":332288,
"mime_type":"vnd.microsoft.portable-executable"
s
"3":{
"type":"mutex",
"name": "redem-Mutex"
}

}
}

8.3. In-depth Analysis Capture

This Idiom describes the process of capturing results of in-depth malware analysis, such as that which characterizes the capabilities or behaviors

exhibited by the malware.

In this scenario, a malicious PE binary has been manually analyzed using a disassembler tool. As part of this analysis, it was discovered that the
malware instance contained a keylogging capability, as well as a Windows-hook based behavior that implements the capability. Because there is

no Windows hook object defined in STIX 2.0 Cyber Observables, it is necessary to define a custom object ("x-windows-hook").

{
"type":"package",
"id":"package--65cddacl-1536-11c6-ffbc-df24f8876fc5",
"schema_version":"5.0",
"maec_objects":[

{

"type":"malware-instance",

84

"id":"malware-instance--b965814d-0c2e-4e01-b8a5-d8c32bb038e6",
"instance_object_refs":["0"],
"capabilities":{

"name":"collection",

"refined_capabilities":[

{

w,n

"name" :"input-peripheral-capture",
"behavior_refs":["behavior--cfb4d731-c6e2-4c8e-808d-111e1ba66962"]
}
]
¥
"analysis_metadata":[

{

"is_automated":"false",

"analysis_type":"static"

}
]

"type":"behavior",
"id":"behavior--cfb4d731-c6e2-4c8e-808d-111elba66962",

"name":"capture-keyboard-input",
"action_refs":["malware-action--e6ecdda7-6a70-4320-8e54-5c956c778b7b"]

"type":"malware-action",
"id":"malware-action--a48e58bb-f35d-4bf6-bbl6-0e74061ac47e",
"name" :"add-windows-hook",
"output_object_refs":["1"]
}
1,
"observable objects":{
"0":{
"type":"file",
"hashes" : {"MD5" : "B6C39FF68346DCC8B67AAQ6ODEFE40C2" },
"size":210564,

"mime_type":"vnd.microsoft.portable-executable"
¥
"1":{
"type":"x-windows-hook",
"hook_type":"WH_KEYBOARD_LL"
}
}

85

86

